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ON THE THEORY OF ION NOISE IN 
MICROWAVE TUBES 

I.    Introduction 

This work examines theoretical aspects of ion noise in microwave tubes. It relies 
principally on measurements on a UHF tube , the EEV K376, and an X-band tube, the 
CPI Continuous Wave Illuminator (CWI) The former is documented in a Ph.D thesis by 
J. K. Smith1 entitled Ion Drainage in High Power Klystrons.   I have documented this 
thesis at the National Technical Information Service in Springfield, VA so that it can be 
more readily available. The work on ion noise in the CWI is documented in a series of 
notes and reports by Technology Service Corporation, a contractor for Naval Surface 
Warfare Center, Crane, Indiana2. Additional interpretation of ion noise in the CWI has 
been written up be Scott Gilmour3, a consultant to NSWC Crane. Furthermore, a 
publication summarizing this work is in preparation4. Here, where appropriate, we 
denote this work as the Crane work and reproduce some of it here where it illuminates the 
theoretical developments here. 

Both Smith and the Crane team focus attention on ion effects, and thereby and noise near 
the carrier frequency. However what they do are fairly different and to a large extent 
complementary. Smith does his experiments on a UHF klystron, the EEV Type K376 
which was manufactured by EEV, in Chelmsford, England. He calls the tube a valve; it 
generates 25 kW of power CW. Crane is concerned with the Continuous Wave 
Illuminator (CWI), manufactured by CPI. This tube operates at X Band with a CW power 
oflOkW. 

The ion noise (usually a slow phase oscillation or noise on the output at a hundred Hz to a 
few kilohertz) is important in the manufacture of the CWI tubes. Sometimes the tubes 
work fine, other units manufactured in apparently the same way have a great deal of ion 
noise. These noisy tubes have to be either redone or discarded. It is a significant cost and 
time driver for the tubes. The successful and unsuccessful tubes do not have significant 
measurable differences, and whatever the dividing line in parameter space is separating 
good from bad, the tubes apparently operate close to this boundary. 

Below, some of the important parameters of both tubes are specified. 

EEV K376: 
Frequency: UHF 
Beam Voltage: 17.5 kV 
Current: 4.6 A (Many of Smith's experiments were done at 3A) 
B=400 Gauss (Beam has 16:1 area convergence, but only at most 4:1 field compression; 

mostly electrostatic focusing into the beam tunnel. 
Drift tube radius: 1.25 cm, beam radius: 1 cm 
Length of the tube: 88 cm 
Typical pulse time: 1 msec, although production tube runs cw 
Gas pressure for Smith's experiments: 2xl0"7 - 10"5 Torr, although production tube runs 

at lower pressure. 

Manuscript approved November 30, 1998. 



Smith modified the tube so that there is a little hole in the cathode to collect the ion 
current. This seems to be the only experiment where ion current was measured. In 
fact Smith did only ion measurements, the tube did not have the microwave circuit 
in place. These modifications to the tube necessitated running at higher pressure 
than a production tube, although he could have run at pressures lower than 10"7, 
but did not because typically not much would have happened in the msec pulse. 

The electron beam number density (I/7crb
2ev) is about 6xl08cm"3, while the gas density 

varies from 6xl09 to 3xlOn cm"3 as the pressure increases from 2xl0"7 to 10"5 torr. 
Thus there is more than enough gas to fully neutralize the beam if it is sufficiently 
ionized and the secondary electrons do generated escape. It does not seem as 
though one has to worry about neutral resupply or recycle to explain Smith's 
results. 

The CPICWI 
Frequency: XBand 
Beam voltage: 20 kV 
Beam current: 3A 
Magnetic field: 2.6 kG. Gun has 45:1 area ratio compression into beam tunnel, mostly 

electrostatic. The field for Brillouin flow is 1.1 kG. 
Drift tube radius: 1.5 mm, beam radius: 1 mm 
Length of tube: About 20 cm 
Pulse time: CW 
The diagnostics in the Crane work are entirely microwave diagnostics, there are no ion 

measurements. 
Gas pressure: Ion pumps near the collector and gun read a pressure of about 10"8 Torr 

when the tube is operating. This pressure apparently varies little from quiet to 
noisy tubes. 

The beam number density is 7xl010 cm"3, while the background density at 10"8 torr is only 
3x10 cm"3. Thus even if the background is fully ionized, it cannot provide nearly 
sufficient ions to give the noise which is observed. Thus for at least the noisy 
tubes, resupplying and recycling of neutrals from the walls has to be important. 

As is apparent, Smith's and the Crane work complement each other nicely from a 
scientific point of view. The former used a pulsed system at high pressure and did ion 
diagnostics, the latter used a CW system at low pressure and did microwave diagnostics. 

All workers emphasize the relation of ion noise to the scalloping of the electron beam. 
This is the fact that the beam is not perfectly matched into the microwave circuit so that 
beam envelop has ripples on it. As parameters of the tube vary, these could affect the 
scalloping in ways which can be relatively easily specified (for instance slight variations 
m the magnetic field) or in ways which cannot be so easily specified (for instance ions in 
the focusing regions of the gun obviously will affect the focusing dynamics of the beam, 
and thereby the scalloping). 



The Crane team has accumulated a great deal of data on the properties of the noise as a 
function of many possible variables in the tube. They reported tests of four tubes2"4. The 
first showed no noise no matter how the parameters were varied. The second of which 
showed no noise at the manufacturer's specified parameters, which they called the name 
plate value (NPV), but showed some noise at other parameters. The third tube showed 
noise at most parameter values, but the noise could be sometimes tuned on and off by 
varying parameters, and the fourth tube showed noise no matter what. Most of the results 
they showed were for the third tube, which allowed variation in noise to be most easily 
studied. The parameter which had the most effect on the nose was the solenoid current, 
the second most important parameter was the beam voltage, the third most important was 
the cathode filament current, and other parameters had little effect on the noise. The 
Crane group concluded that the effect of the filament current was not due to stray 
magnetic fields set up, because the noise took some time to react to the solenoid current 
variation, whereas the magnetic field variation would of course occur instantaneously. 

The noise is typically observed as a slow variation of the output phase with time. Shown 
in Fig. (1) is a plot (from Ref. (2)) of output phase versus time for the CWI at five 
different solenoid currents (The NPV current is about 20A). There are several comments 
regarding Fig. (1) and the other figures like it. First, the low amplitude (phase change of 
about 0.1 degrees), fast (frequency about 1 kHz) oscillation is instrumental and not a 
characteristic of the microwave tube. This high frequency, in fact is a multiple of 60 Hz. 
Second, the lines which are perfectly flat have been time averaged, so they actually look 
like the other lines shown with the small oscillation2,4.   Noisy tubes show a phase 
variation of a degree or so with about a 10 ms period. However the noise can be tuned in 
and out by optimizing the solenoid current; at one amp above the minimum current, and 
at the maximum current the tube shows little noise, but there is noise in between. 
Another way to view this is in frequency space. Shown in Fig. (2) is a plot (from Ref. 3) 
of the spectrum in Hz away from the carrier frequency for two different magnetic fields, 
now only apart by 1%. There are similar curves for variation with beam voltage, but this 
variation shows less sensitivity. 

The phase curves in Fig. (1) are rather smooth function of time; however other data 
shows that the phase dependence can appear more like a relaxation oscillation. This is 
most apparent in the Crane work in their studies of the dependence of phase on cathode 
filament current. Shown in Fig. (3) are plots of phase as a function of time at different 
filament currents. Clearly, at some currents there is a very sharp drop in phase, giving the 
curve the appearance more of a sawtooth than a smooth curve. The phase frequency is 
typically 100 Hz, although there is some variation. The Crane team has studied frequency 
as a function of the current of the input solenoid, and this is shown in Fig. (4). At the 
lowest current, the frequency is above 1 kHz, but as the current is increased, it drops to its 
more normal values of 100-200 Hz. There is a range of current where there is a double 
sawtooth structure to the phase oscillation, and when passing through this range, there is a 
rather abrupt drop in body current. 
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Figure 1.   Output Phase of the CWI as a function of time for 5 different solenoid currents 
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It seems to this author that the gas pressure in the tube may be playing a very important 
role despite the lack of variation of signals on the ion pumps. The pumps are quite far 
away, and the volume of the circuit region is very small compared to the volume near the 
pumping ports. Also, there may be different parts of the wall, in the vicinity of the 
microwave circuit, that alternately emit and absorb gas, and these may be different from 
tube to tube. This emission and absorption could all be locally determined, so that very 
there would be very little signature of it at the ion pumps. In any case, it seems useful to 
record this speculation here, and also make the obvious suggestion; namely that if there is 
any way the pressure in the operating tube could be measured in the region of the 
microwave circuit and focused beam, it would probably be worth the resources to do so. 

For the most part, this report concentrates on the theoretical aspects of the ion noise, and 
more generally, on the behavior of the ions and the plasma produced in the tube. In all 
cases the tube will be assumed uniformly magnetized. However there are a number of 
different axial electrostatic potential profiles that might exist in the tube. These are 
sketched in Fig. (5a-c). Figure (5a) is the normal axial potential profile one might expect 
in a microwave tube. The cathode is at some large negative potential. The tube wall is 
grounded, but the region of the beam is at a lower potential because of the beam space 
charge, and finally, the collector is grounded. Ions produced by the beam are 
electrostatically confined to the beam region. However the magnetic field is sufficiently 
weak that the ions are essentially unmagnetized even though the electrons are strongly 
magnetized. The ions then drain toward the cathode and are repelled by the anode. This 
is generally the configuration examined by Smith, and they theory developed here seems 
to give a reasonably good model for the observations. 

Figure (5b) shows the potential profile if the beam profile is scalloped. The scallops 
correspond to potential wells which axially alternately confine the ions and electrons. As 
the plasma is formed, the wells begin to fill up. However as they fill, the potential 
profiles modify due to the trapped particles until at some point the wells disappear. At 
this point a pulse of confined ions will discharge to the cathode, and a pulse of confined 
electrons will discharge to the collector.   The relaxation oscillation of the phase of the 
microwave signal is generally interpreted as a signature of this phenomenon. As the ions 
and electrons build up in the traps, the output phase slowly changes due to for instance 
slight changes in say beam velocity. Then when the traps dump, the phase switches, 
possibly abruptly, back to its initial value. If the ions are trapped above the potential 
maxima, and electrons below the potential minimums, we will see that theory predicts a 
sensitivity to the magnetic field and voltage which seems to be reasonably well obeyed. 
Furthermore, theory gives reasonable estimates for the periods of these oscillations. 

Figure (5c) shows the potential profile with a depressed collector. This might be used in a 
microwave tube to increase efficiency. It is in fact used in the CPICWI, so it is actually a 
combination of Figs (5b and c). The reason Figure (5c) may be very different is that the 
potential structure as shown is actually a Penning trap. These are used to confine 
electrons, and actually confine them extremely well. The reason is that electrons in the 
Penning trap can be a thermal equilibrium, and as such can be confined for very long 
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Figure 5.   Possible axial potentials in a linear microwave tube. 



times. The theory of Penning traps would lead one to believe that a tube with a depressed 
collector could contain a large density of trapped electrons. However in the CWI, the fact 
that the magnetic field lines threading the beam may strike the wall before going into the 
depressed collector has a large effect on the number of trapped electrons. Taking this into 
account seems to explain the results of the Crane experiments on the effect of the 
depressed collector. This leads to an obvious speculation, namely that in a CW gyrotron 
operating with a depressed collector, where the voltages and magnetic field strengths are 
considerably higher, there could be many more trapped secondary electrons. 

This work is organized as follows. First Section II discusses the microwave phase shift as 
a function of the axial profile of the electrostatic potential in the microwave tube. Section 
HI discusses electron production by the secondary electrons as contrast to production 
directly by the beam. Then we discusses the physics of the various traps. Section IV 
discusses that of Figure (5a), and so on to Section VI which discusses that of Fig. (5c). 
One conclusion, especially with regards to Figs (5b and possibly 5c) is that ion 
production from the secondary electrons is very important, because the secondaries 
themselves form a confined plasma with particle energy comparable to that at the 
maximum of the ionization cross section. Section VII very briefly discusses the question 
of gas supply in the CWI, Section Vm then discusses what directions future theoretical 
studies go in, and Section DC summarizes conclusions. There are 4 appendices which 
present more detailed calculations of ionization from secondaries and calculations of 
equilibria. 

II. The Microwave Phase Shift. 

Here, we discuss the microwave phase shift, as has been done elsewhere5. The key is that 
the CWI is a traveling wave amplifier. The simplest model for traveling wave 
amplification is that two waves, one traveling with the beam velocity v2, and one 
traveling with the phase velocity in the slow wave circuit, vph, couple with coefficient a, 
so that the dispersion relation for the system is 

(to-kvz)(ö>-kvph) = -a2 (l a) 

which gives wave number 

K  (lb) 
2vzVph 

If vz is nearly equal to vph, the term in the radical gives the amplification. However here 
we are more concerned with the phase, the term outside the radical. For maximum 
amplification, where vz=vph, the total phase length is <p=a>IVvz. Taking <ö=6xl010 as is 
characteristic of an X-band microwave tube, and other parameters of the CWI, we find a 
phase length of about 150 radians, or about 9000 degrees. Now let us consider what 
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happens when the beam velocity changes due to a change in voltage. Since the beam 
velocity varies, but the phase velocity does not, we find 

coLAv, 
(p=~2T~ (2) 

where we have assumed that vz « vph. Thus a 2% change in voltage, which gives a 1% 
change in velocity, will give a Vz% change in phase. 

Experiments in Crane, reproduced in Fig 6 show clearly that a 2% change in voltage 
causes a 1/2% change in phase, as predicted by Eq. (2). Furthermore, as Fig. (6) 
demonstrates, the sign of the phase plotted is actually a mirror image of the phase as 
defined in Eq. (1); lower velocity (i.e. lower voltage) clearly has to give a higher phase. 

Now let us envision the case where the potential has a slight variation along the tube axis. 
Let us assume that because of a ripple in the beam envelop, there is a sinusoidal potential 
variation along z given by <j)0cos(kBz+Ti), where kB is the ripple wave number, generally 
equal to the cyclotron wave number £ljvz, Qc being the cyclotron frequency. Then, if fa 
is small, we have approximately 

(Oh      coetbn    , . „ , 
<?** n—sHsin(M'+»?)-SMi'?} (3a) 

V* 2mVzo kB 

We see from Eq. (3a) that if kBL = 2mt, the phase fluctuation due to the ripple will cancel 
out. For the CWI, with a 20 kV beam and a 2.3 kG field, the ripple wavelength is about a 
centimeter and a quarter, so there are about 16 cyclotron wavelengths in the 20 cm length. 
Thus a change in B of 6% (corresponding to a change of solenoid current of this amount) 
will change the total number of ripple wavelengths by one. Hence a 3% change will vary 
the phase shift from maximum to minimum, and the phase shift should be rather sensitive 
to a 1% change in solenoid current. As regards the voltage, the velocity goes as the 
square root of the voltage, so kB is half as sensitive to changes in voltage as to magnetic 
field changes.. This also seems to be consistent with the measurements, as has been 
pointed out. 

We have assumed the ripple in beam envelop to be purely sinusoidal. Actually velocity 
spread on the beam can cause the downstream ripples to wash out by phase mixing. In 
the CWI, a 6% velocity spread should be enough to phase mix the last ripple. If we 
model the phase mixing with exponential damping for simplicity, we find that if the 
length L is large compared to the damping length, 

<P~—+ Ö—^-sinr? (3b) vz     2™JkB 

so the phase shift depends mostly on the input conditions. Notice that the maximum of 
the factor in the brackets in Eq. (3a) is 2, whereas the maximum value of sinTj in Eq. (3b) 
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is unity. Thus the maximum phase departure for a beam with no velocity spread is about 
twice as great as that for a beam with velocity spread. Thus a small amount of velocity 
spread may actually be beneficial as regards ion noise (although obviously it should be 
small enough so as not to adversely affect the microwave generation). 

Thus the following picture possible picture emerges for the phase shift in the CWI. The 
beam has a ripple which gives rise to phase shift. As the background gas is ionized, the 
ions trap above the potential minimums, and the electrons trap below the potential 
maxima. As their densities build up, this reduces the peak to peak potential. When it 
gets sufficiently small (or zero), the traps dump their particles and the process starts 
anew. 

If this trapping and untrapping causes the potential amplitude ty0 to oscillate between zero 
and its maximum value, the phase oscillation should have a maximum peak to peak 
amplitude of a quarter of a degree according to Eq. (3a) and an eighth of a degree 
according to Eq. (3b). The former agrees qualitatively, but is somewhat less than what is 
measured. The latter is definitely less than what is measured. It may be that the ripple 
depth is greater than 10%, especially at the input. Also it might be that the ripple traps 
are not equally effective in trapping electrons and ions. 

DI. Ionization from Secondaries 

We call a beam electron a primary electron and it ionizes the background gas to some 
extent. The electrons that it directly produces we call secondaries. The cross section for 
ionization by electron impact is given for a number of gases is shown in Fig. (7), taken 
from Brown . At high energy, the cross section has a dependence on energy typically 
proportional to InE/E, so we adopt here the approximate expression for ionization for 
high energy incident electrons 

,    2,    4jcl0-,7ln£(ifcet0 
G Aon*) = ^ '- (4) 

E(keV) w 

As is apparent from Fig. (6), the cross section has a broad maximum, above 2xl0"16 cm2, 
for incident electron energies between about 40 and 500 eV. The primary, which has 
energy of perhaps 20 keV, on the other hand, produces ionization with a cross section of 
about 5x10"   cm . Thus it is natural to think that in some circumstances the secondaries 
could give rise to more ionization than the primaries. In fact, in normal electron 
propagation in say air or a plasma, this additional ionization typically gives about triple 
the beam ionization7,8. In a microwave tube, where the background pressure is very low, 
the ionization by the secondaries may be greatly reduced because they may not be 
confined long enough to give significant additional ionization. However in other 
instances the secondaries may be confined (as in for instance Figs. (5b and c), and in this 
case, the ionization from the secondaries could be an important factor. Here we consider 
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both possibilities, and in Appendix A, we review the normal calculation of ionization 
from secondaries. 

Consider a beam electron of energy E. As it propagates through the microwave tube of 
length L, which contains a background gas of density N [N(cm"3) = 3.5xl016 P(torr)], 
the number of secondary electrons it produces, 2; is 

£ = NGi(E)L (5) 

For the CWI, with L=20 and E=20keV, we find % = 3P. Thus if the pressure is 10"7 torr, 
each electron produces only about 3xl0~7 secondary electrons and ions. Since each 
secondary electron is ultimately collected somewhere, on the radial wall or the collector, 
the current from the secondaries is only about a microamp. Notice that this is very small 
compared to the body current, typically 30 mA from Fig. (4), so that it is very unlikely 
that this current would be observed in a current measurement. 

Now consider each secondary, and ask how many tertiaries it produces. The formula is 
the same as for primaries, except that the energy is the energy of the secondary. Even 
saying that each secondary has an energy corresponding to the peak of the ionization 
cross section, then each secondary produces only about 10"5 tertiaries, or the tertiary 
current is about 10"12 times the beam current. 

This result is at variance with more generally accepted result that each secondary 
produces a total of perhaps 2-4 tertiaries. The reason the results are so different is that the 
standard calculations assume, and standard experiments measure, the cases where the 
secondary electron slows down locally, i.e., where it was produced. As it slows down it 
clearly can produce additional ionization if it has sufficient energy. However for the case 
of the microwave tube, it may escape long before it generates additional ionization. 

However if the secondaries are confined, they can produce a much greater amount of 
ionization. There are two ways one could describe this extra ionizaton. First we consider 
the case where the secondary is produced, but is confined, for instance by axial potentials 
at both ends of the microwave tube. Then, as it slows down, essentially locally (ie within 
the microwave tube), it generates additional ionization as standard theory would predict. 

For the case of a ripple trapped electron, it is more likely that the electron will gain some 
energy as it traverses its confined orbit. Consider a trapped secondary electron produced 
at nearly its maximum potential energy. As it oscillates in the potential well, it acquires 
kinetic energy.   Since these wells have depth of typically 100 ev, the electron acquirs an 
energy near the maximum of the ionization cross section. Then it is simplest and 
probably most accurate to consider the trapped electron as a fluid with density n. In this 
case the density builds up as 

dn    IoJE)N 
— = —'~—+<(Ji(t)Vl>nN (6) 
dt        7Cerb

l v ' 
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where I is the beam current, rb the beam radius and < a,(t)V, > is for the trapped 

electrons, assumed to be at energy about 100 eV. Thus aV for the confined electrons is 
about 1.3x10" cm /s. This is a rather large value, and since the ionization rate is 
proportional to n, can give rise to exponential increase in ion density, that is avalanche 
ionization. Thus, theory shows that the effect of ionization by secondaries can be either 
absolutely unimportant, if they are unconfmed, or quite important if they are confined. 

IV.  The Normal Axial Potential Profile. 

Figure (5a) plots the potential along the axis of the microwave tube. Although the wall of 
the microwave circuit is grounded, Fig. (5a) shows the potential along the axis as 
depressed to a negative value. This is due to the space charge of the beam. The electron 
number density of the electron beam is given by 

nb = LWevb) = 3.4x 1010 cm'31(Amps)/[V0
1/2(volts) rb

2(cm)]        (7) 

where vb is the beam velocity and V0 is the beam voltage.  Assuming uniform charge 
density in the beam, Poisson's equation gives the potential between the center and edge 
of the beam Vs as 

Vs (volts) = 1.5x 1041(Amps) / V0
1/2(volts) (8) 

Since the beam at radius rb, might not fill the drift tube at radius a>rb, the potential drop 
between the grounded drift tube wall and beam center is given by 

Vb = -Vs[l+21n(a/rb)] (9) 

While the above formulae are in MKS units, it is also worth noting some results from 
CGS units, namely that 300 volts = 1 statvolt, and the charge and current in CGS are 
3x10 times larger than they are in MKS units. Furthermore, in CGS units, voltage and 
charge per unit length have the same units, and for the beam in CGS units, the relation 
between charge per unit length A, and beam voltage Vs is simply 

A = Vs (10) 

For an axial potential of the form of Fig (5a), as ions and secondary electrons are 
produced by the beam electrons, the secondary electrons drain to the collector and the 
ions drain to the cathode. Even though the potential drop to the collector is so much less 
than it is to the cathode, the electrons are so much lighter that neglecting their space 
charge is a reasonable approximation. 
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We now give an approximate calculation relating ion current to the other 
parameters of the tube. A more accurate calculation will be given in Appendix B. The 
equation for number conservation equation for the ions in steady state, integrated over the 
tube cross section, (calculations here will generally be presented in CGS units) is 

^K.y = ioeN (11) 
ox 

where x is the coordinate along the axis of the tube, Vj is the ion velocity, d is the 
effective ionization cross section, and N is the volumetric number density of the 
background gas. Since none of the secondaries are confined, we assume the ionization 
cross section given by Eq. (4) and Fig. (7). 

Integrating Eq.(8) over the length of the tube, and assuming the right hand side is 
homogeneous, and there is no ion current to the collector, we find 

A,^ = /ff,iW (12) 

However the velocity at the plasma edge is related to the axial voltage drop across the 
beam, which, by Eqs. (9 and 10) is related to the difference in ion line charge density 
from one end of the beam to the other. (Note that the space charge density from the 
electron beam is uniform axially, and the space charge from the secondary electrons has 
been neglected.) Thus V^ge = [2cVaxM]m, and 

Vax = K[A0-Aedge] (13) 

where K = 1 + 21n(a/rb), and Ao is the ion line space charge density near the collector. 
We make the reasonable assumption, and show in Appendix B, that Acdge = AQ/2. This 
then gives the steady state relation for line charge density as a function of beam current 
and ionization rate as 

,5 = 2IatNd 
rKe m 

For the parameters of the EEV Type K376, and assuming M is 30 times the proton mass 
(Smith thinks the most likely components are CO and air) we find that 

Ao(coul/cm) = 5x 10"7 P^CTorr) (15a) 

and the axial voltage drop across the tube is 

V,« (volts) = 4.2xl05 F^Torr) (16a) 

17 



The linear charge density of the electron beam in Smith's experiments is typically 3xl0"10 

Coulombs per cm. Figure (8) shows Smith's curve of ioncharge as a function of pressure. 
It is measured by taking the steady state ion current and multiplying by the time to form 
steady state. The curve is almost certainly incorrect, at least as far as the vertical axis is 
concerned. For instance at a pressure of 10"6 Torr, it shows an ion charge of almost 10"6 

Coulombs, whereas the charge in the beam is only about 3xlO"8 coulombs in the 88 cm 
beam tube, about a factor of 30 lower. Clearly if the ion charge density is equal to that of 
the beam, the beam cannot be confined, many ions escape radially, and the model breaks 
down. One possible interpretation of Fig (8) is that ions are stored in may other places 
besides within the microwave circuit; another interpretation is that the labeling of the 
vertical axis of Fig. (8) is incorrect.  Perhaps a less ambiguous interpretation is to look at 
the break in the experimental curve, and interpret it a the point where the ion charge 
density is equal to that of the beam. Smith also makes this interpretation. The theoretical 
result for the parameters of Smith's beam is that A«, = beam linear charge density when 
[P]    = 5x10 . The predicted pressure is about l.lxlO'5, not too far from the measured 
pressure of about 7xl0"5. 

Another check comes from the steady state current measurements.  For a pressure of 10"6 

Torr, a rather typical pressure for Smith's experiments, we find the voltage drop across 
the tube axially is 42 volts. For an ion with a mass of 30 times the proton mass, this is a 
velocity of 1.2xl06 cm/s, and an ion drainage current to the cathode of about of 40 
jxAmps from Eq. (12). A plot of Smith's measured current as a function of pressure is 
shown in Fig (9). The predicted current is within a factor of 2 of Smith's corrected 
measurements. If there is additional ionization due to for instance trapped secondary 
electrons, this might explain the difference. 

Inherent in our calculation of the effect of secondaries, is the assumption that the mass is 
30 times the proton mass. If the ion mass could be independently identified, for instance 
by a mass spectrometer behind the cathode, it would tell a great deal about the different 
constituents of the ion stream to the cathode. The current is predicted to be nearly 
independent of ion mass. However the ion generated voltage drop and the ion charge 
density (and also the charge density at which the ion density equals the beam density) 
does depend on ion mass.   Smith's measurements do seem to indicate that the gas more 
likely has mass of about 30, and is less likely to be either protons or heavy metal ions. Of 
course a measurement with a mass spectrometer would be the ultimate test. 

For the CWI, we take d=10 cm, accounting for the fact that ions can exit both ends, 
assume the ions are protons, as is characteristic in high vacuum systems, and find 

Ao(coul/cm)=3xl0"8P2/3(torr) (15D) 

V^ (volts) = 2.5x 104 P273 (torr) (16b) 
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Figure 8. Plot of ion charge as a function of gas pressure from Ref. 1. 
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Figure 9.   Plot of ion current as a function of pressure from Ref. 1. 
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V The Scalloped Beam 

In Sec. HI we discussed ion currents in a beam where the axial potential is smooth. 
Actually the beam may have scallops in its envelop, and this could give rise to an axial 
electrostatic potential like that shown in Fig. (5b). If the beam radius has an axial profile 
rb(z) = e cos kz, then the potential along the axis, from Eq. (9) is 

Vb(z) = Vb + 2VS e/rb cos kz (17) 

This potential alternately can trap ions and electrons about positions of potential 
minimums and maxima respectively. Notice that these traps overlap in space, so trapped 
electrons and ions coexist at the same spatial positions, even though they are trapped in 
different traps. Let us then calculate the maximum trapped energy for a trapped particle. 
Clearly it is 4Vs(e/rb). If we assume a canonical value of 10% for e/rb, then for either the 
CPICWI or EEV K376, the maximum trapped energy is about 150 eV. As the 
background gas is ionized, the traps fill up, with an excess of ions above the potential 
minimums and an excess of electrons below the potential maxima. However as say ions 
accumulate around the potential minimums, the potential increases according to Eq. (10) 
(and correspondingly, the potential is reduced around the potential maxima due to trapped 
electrons). Thus the ions accumulate in the trap until 

Ai = 4 Vs £/rb (in CGS units) (18) 

and at this point the trap disappears and the ions are dumped to the cathode, and the 
electrons to the collector. 

As we have seen in the last section, the build up of ion charge in the unrippled beam 
causes a potential drop, which gives rise to an average field V^/d. A question is whether 
this electric field can cancel the maximum ripple induced electric field, and thereby 
eliminate the maxima and minima which trap the electrons and ions. The condition, from 
Eqs. (16 and 17) is 

Vax/d>2Vsk(e/rb) (19) 

For either the CWI, or the K376, the pressure required by Eq. (19) is much higher than 
the operating pressure, wo we do not expect the oscilliatory nature of the ripple potential 
to be washed away by the dc ion flow in the unrippled beam. 

The picture of ion noise from a scalloped beam then is the following. The ions and 
electrons build up in their traps, due to beam and avalanche ionization, and as they do, the 
beam voltage and microwave phase gradually change in response to this. However at 
some point the traps are filled and dump. At this point, the beam and microwave 
parameters are reset to their initial values, and a relaxation oscillation is set up. In 
Appendices C and D, approximate nonlinear wave equations are derived for two cases. 

21 



Appendix C considers a thermal distribution of trapped particles and shows that wave 
solutions exist only for trapped charge densities below some maximum value given 
roughly by Eq. (19). Appendix D shows the same thing for a trapped particle distribution 
arising from a plasma that is initially cold. 

Smith's work on the K376 also saw similar properties regarding ion current oscillation, 
but he did not do the careful optimization to eliminate oscillation. He saw high frequency 
ion current fluctuations, at frequencies from a few kHz to tens of kHz. Since his pulses 
were only a millisecond long, he could not have seen the low frequency oscillations of 
Fig. (1) However since his gas pressure was much higher, the ionization occurred faster 
and the frequency would be correspondingly higher. 

Let us work out the basic period for these ion current or microwave phase variations. We 
begin with Smith's results, because his background pressure is high enough that one does 
not have to worry about where the neutrals come from. To consider the ionization, one 
needs to consider ionization both by the primary beam electrons, and also by the 
secondaries. However now these secondary electrons are assumed to be trapped below 
the potential maxima and become a separate fluid of trapped electrons.  The trapping 
potential, for a 10% beam scallop is over 100 volts, just about the peak of the ionization 
cross section. Thus, even if an electron or ion is produced at rest, as it accelerates in the 
trapping potential, it gets energies of order 100 eV. Thus we consider the trapped 
parrticles to be a separate fluid as in Sec. HI. 

We rewrite the equation for the line charge density A, of secondary electrons or ions in 
the trap, Eq. (6) as 

dA 
— = oJN+asAN (20) 

where c^ is the ionization rate for the secondary electrons, as = a0 (JM)m, the peak 
ionization cross section times the thermal velocity of the electrons in the traps. We take 
Os= 1.3x10"W/s. The first term on the right of Eq. (20) is the direct ionization from the 
beam. The solution of Eq. (20), if n=0 at t=0 is 

A = -^-(expa,M-l) (21) 

The electron and ion density then build up according to Eq. (21). However the line 
density can only build up to a maximum value given by Eq. (19). Thus, if the trapped 
density starts out as zero, the traps all dump in a time given by 

Nt(dump) = a In (22) 
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where Eq. (22) is expressed in cgs units.  From the known period of the ion oscillation, 
Eq. (22) can be used to give an estimate of the gas pressure in microwave circuit. 

Assuming e/rb = 0.1, so that the electrons trapped in the ripples have about 100 eV 
energy, we find 

Nt(dump) = 5Axl06   for the CWI (23a) 
and 

Nt(dump) = 6xl06     fortheK376 (23b) 
In each case, avalanche ionization is somewhat more important than beam ionization. 

Now let us review the measurements. Smith's main results were for pressures between 
4x10 and 1.5xl0"5.  Shown in Fig 10 are Smith's measurements of ion current as a 
function of time and pressure1.  The period is about 50us and it is not necessarily 
constant during the pulse. It is not easy to discern a dependence of period on pressure, 
but Smith seems to think that the period is generally a decreasing function of pressure. 
The pressure predicted by Eq. (23b) is about 3X10"6 torr, about a factor of 3 below what is 
measured. It may be that in Smith's beam, which is probably not well matched after all 
his modifications to the experiment, the e may be considerably larger. 

We now turn to an analysis of the CWI. If the ripple amplitude is about 10%, then the 
potential well can confine about 10% of the beam current density according to Eq. (19). 
However one immediate problem is that for the very small radius beam and low pressure 
of the CWI, if the background gas (at an assumed pressure of 10"8) is fully ionized, it can 
contribute at most a few percent of the ions necessary to fill the trap. Thus recycling and 
resupplying of the neutrals must be playing a very crucial role in the noise in the CWI, if 
in fact this noise is caused by ions. If the neutrals recycle from the wall of the tube, 
which has a radius of only 1.5 mm, then if they enter the tube at the sound speed at'room 
temperature, the time for recycling from the walls is only 4us.  Using the measured 10 
ms dump time, we find that Eq. (23a) predicts a gas pressure of about 2xl0"8 torr, which 
is reasonably close to what is measured by the ion pumps. However, as we will see in 
Sec Vm, ionization can considerably reduce the pressure, and thereby it ought to reduce 
the frequency of the relaxation oscillation. 

Let us finally comment on an aspect of Fig. 4. As the current in the input solenoid varies, 
the frequency can increase to over a kilohertz. This seems to imply that the pressure, at 
least near the input, also increases by about an order of magnitude. Furthermore, it 
implies that potential ripples near the input are more important than those further down. 
This is consistent with the arguments we made in Sec. H. Namely, if the velocity spread 
on the beam were greater than what is calculated by the gun electron gun simulations, the 
ripples further down stream would phase mix away. Indeed a velocity spread of only6% 
would be sufficient to wash away the ripples at the beam exit of the CWI. 

23 



w\ i PWn Ww WWs mW WW K  -H Hi riiüieiBii 
c)    p- 7.5 X IÖ ,-6 

fffitäfeift£tfll 

yEBBSEili 
b)   p= 8.0 X IÖ"6 

wir 
c)    p= 9.3 X IO'6 

ÜUBglEBIl 
d)   p= 1.15 XIO"5 

'EUSHUE 

mUMUHkm 

e)    p=  1.2 X IÖ"5 
f)    p=   1.3X10 

IIETlTflKinHI 

■HlMHEfll 
g)   p= 1.47 X IO"5 

IIIEBBJEEEIB 
h)    p=   1.6 X IO-5 

ION  CURRENT   OSCILLATIONS 
NORMAL   BEAM   CURRENT 
COLLECTOR    EARTHED 
HORIZ.:    lOOjjsec/div 
VERT.:a-d    220*ja/div 

e-h    550 

Figure 10.   Plot of ion current as a function of time, and at different pressures in Smith's 
experiment. Notice that it typically takes a certain time for the ion current to reach its 
equilibrium value, and then there is an oscillation about this value 
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to summarize, the ion current oscillations that Smith observes, at least at high pressure, 
appear to be reasonably consistent with the model of filling and dumping of ion traps, 
particularly if the beam has a large ripple amplitude. However the phase noise observed 
in the CWI appears to be consistent with this model only if the background gas density is 
maintained at its initial value in the presence of high ionization. 

One additional conclusion which could be important is the following. The ionization 
from the secondary trapped electrons relies on the fact that the potential barrier formed by 
the beam scallops is large compared to the ionization potential. If a sufficiently well 
matched beam could be produced, so that the potential in the scallops is comparable to or 
less than the ionization potential, say a potential of 20 eV or less, then the trapped 
secondaries could not further ionize the gas, and the wells would fill only by ionization by 
the primary beam, or by untrapped secondaries a slower process. 

VI.  The Penning Trap 

Now consider a potential like that shown in Fig. (5c). Here a depressed collector is used, 
so as to increase the microwave efficiency by recovering a portion of the beam energy. 
The secondary electrons now cannot get to either the collector or cathode; they are 
trapped in the tube body. This configuration is simply a Penning trap. This is an electron 
trap in which the electrons are confined radially by the magnetic field, and are confined 
axially by two large negative potentials at the ends. It is important to realize that in an 
azimuthally symmetric configuration, a thermal equilibrium exists for the trapped 
electron plasma. This is an equilibrium of the rigid rotor type whose electron distribution 
function is given by 

*t   xr\       no fH-0)PA f(r>V)=72jfr)cxv-{--rL) w 
m ) 

where H is the electron energy H = 1/2H1V2 - e<])(r,z) and Pe is the canonical momentum in 
the 6 direction, Pe = mver-eAr/c, where A is the vector potential. For a uniform field, 
A=rB/2. Therefore, the electron function is give by 

.    , e<j>-m(0(Q.c -6>)r2/2 
n(r, z) = n0 exp -2- i-£ '-  (25) 

where Qc is the electron cyclotron frequency. The density corresponds to a Maxwellian 
but with an additional effective potential proportional to r2. In other words, the magnetic 
field gives the potential of a uniform background of positive charge. The self consistent 
electrostatic potential $ may be calculated by inserting Eq. (25) into the right hand side of 
Poisson's equation. Two dimensional self consistent solutions have been found 
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numerically by Prasad and O'Neil9. For the case of low temperature (or more precisely, s 
plasma dimension large compared to a Debye length, XD), the density is only non zero if 

m    _        . 2 
e<t> = —(0{Q.c-(o)r2 (26) 

That is, the electron density must be constant, and Eq. (26) gives the relation 

(ö(nc-Q)) = o^2/2 (27) 

where (ä^ is the electron plasma frequency. The maximum electron density for which 
radial confinement exists is given by 

0)2
pe max rt (28) 

and this is the Brillouin condition. At the edge of the plasma there is a Debye length 
sheath at which the density falls to zero, and its shape is determined by the potential on 
the wall of the penning trap and by the plasma density. Also, according to Eq. (26), the 
maximum radius of the plasma is determined by the fact that the maximum potential in 
the plasma must be below the confining potential. 

The point is that the collisionless, azimuthally symmetric electron plasma in the Penning 
trap is in thermal equilibrium, which is unusual for a plasma. It is well known that there 
is no thermal equilibrium for a magnetically confined plasma containing both positive 
and negative charges. In practice, these pure electron plasmas can be contained for very 
long times. The UCSD group over about the past two decades have studied these plasmas 
and have in fact found extremely long lived confined non-neutral plasmas. The 
confinement time, at least for pressures above about 10"8 Torr was determined by 
Malmberg and Driscoll10 to be governed by collisions with the background neutrals. 

Theoretically, this is simple to understand. If collisions with the background neutrals are 
present, but the electron neutral collision frequency v is much less that the electron 
cyclotron frequency, and electron inertia is neglected, the electron momentum equations 
in the r and 9 directions become 

eF 

m (29) 
-ncvr-we=o 

so that the azimuthal velocity is cFVB and radial velocity is vr = cvE/QcB. The radial 
electric field is the field from the confined charge. This charge might be either the beam 
charge or the confined plasma charge. We assume for now that the beam charge is 
dominant. In this case, for the CWI, the ExB azimuthal drift velocity of the electrons is 
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about 6.5xl08 cm/s, that is an electron energy in excess of 100 ev. The electron 
momentum exchange collision frequency is N<jv where c is the momentum exchange 
collision cross section and v is the electron velocity. The confinement time is then x = 
a/2vr and it scales as 

TocB2/P (30) 

Measured values of the confinement time compared with theory, for a range of magnetic 
fields and pressures, from Ref. (10) are sketched in Fig.(l 1). The largest magnetic fields 
in the experiment were only 676 Gauss, considerably smaller than in the CWI. Thus at 
the pressures these tubes operate at, the lifetime of the electron confined in the Penning 
trap can be many minutes, or even an hour or more. 

Now let us work out a simple equation for the evolution of electron density in the trap 
assuming the density and radius are small enough that the electrons are radially and 
axially confined. The Penning trap in the CWI is different from those in the UCSD 
experiments because the magnetic field is reduced before the field lines enter the region 
of the depressed potential. Thus not all electrons produced by the beam are trapped. 
Some secondaries, those produced along the outer field lines strike the wall and never 
make it into the depressed collector region. The beam electrons, on the other hand, have 
sufficient energy that they are non adiabatic, and make it to the collector even though they 
have to cross field lines to do so. 

To write an equation for the number density of trapped electrons, we will simplify the 
system somewhat and neglect avalanche ionization, but assume that the secondaries, as 
they bounce around on their confined orbits, generate on the average of a total three' 
electrons, consistent with Bethe's formula and an assumed energy loss of about 30 ev for 
each pair production (see Appendix A). As we have seen in the last section, considering 
the ripple trapped electrons as a fluid undergoing avalanche ionization, we found that the 
ion period estimate was consistent with beam ionization just slightly less important than 
direct beam ionization. Thus the neglecting avalanche ionization, but increasing beam 
ionization so it is consistent with classical estimates should be a reasonable 
approximation. 

The electron production rate is then 3aJN/7terb
2. The loss rate is 2nv,/r. As we have 

seen, vr = (v/QJcE/B. The collision frequency is Namve, where am is the electron 
neutral momentum exchange collision frequency, typically about 1015 cm2 for electron 
energy below about a few hundred ev. The theta velocity is just the EXB drift, cE^B. 
The next thing is a calculation of the electric field. In the region of the Penning trap the 
field is generated by both the trapped electrons with density np and the beam electrons 
with density nb. As a function of radius, the electric field is given by E, = 27ie(np+nb)r. 

This analysis leads to an equation for the trapped charge density 
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Figure 11.    Measured confinement time in a Penning trap sketched from Ref. 12. 
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dn    3aJN    2nNouc2,n     ,2/ ,2 
__ = —> M    (2ner){nn+n.) (31) 
dt     eitr2      r   QCB

2 ' v p     bJ K   } 

where r is the radius of the plasma in the trap. It is the radius of the last magnetic field 
line that makes it through the depressed collector. We define this as r=£rb. The factor £ 
is less than unity, perhaps about 0.25 if the field at the depressed collector is 1/16* of the 
field in the microwave tube. Equation (31) gives an equilibrium density which solves the 
equation 

il(r|+l)2-A = 0 (32) 

where TI = np/nb and 

A _ 3a,.       IQCB
2 

ou tfc
2(2nenbf 

(33) 

For positive A, Eq (32) has one real root and it is positive. In the limit of very small A, it 
is TI=A, in the limit of very large A, it is r\=Am. For the CWI parameters we have been 
using, A = 0.24/£. For our assumed value of £=1/4, A is about equal to one, and the 
solution of Eq. (32) is approximately T]=0.5. Thus the predicted plasma density is about 
one half of the beam density, and confined plasma extends up to about on quarter of the 
beam radius. 

Let us determine the change in beam voltage from the confined plasma. Since the 
electron plasma has a radius smaller than the beam density, we will calculate the change 
in potential at the edge of the beam with and without the plasma. Assuming both the 
beam and plasma density are uniform up to rb and £rb (where £=0.25) respectively, we 
find the change in potential at the beam edge generated by the plasma is 

A<|> = 27cenp(£rb)
2 ln(a/rb) (34) 

This gives an additional potential depression at the beam edge of 10 volts, or a fractional 
voltage depression of 5X10"4. This gives a relative phase change of one fourth of this 
value, as discussed in Section H. Hence the phase shift is predicted to be something over 
about 1°. 

Experiments like this have been done at Crane, and they appear to roughly confirm this 
prediction. Figure (12) shows ion noise measurements with the depressed collector on 
and off.   (Actually the curve indicating the grounded collector actually has a collector 
with a small negative voltage, about minus 100 volts2.) They two measurements show 
similar noise properties, more important, for the purpose of this discussion, is the 
measurement of ambient phase in the two. They are indeed about a degree'and a half 
apart, and the phase was carefully followed as the collector was grounded. 
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Figure 12.    Output phase of the CWI with and without the depressed collector. 
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Let us finish by considering two additional aspects of the electrons in the Penning trap, 
the interaction of these electrons with the beam and microwaves. As regards the beam, 
there is the certain possibility that there could be a two stream instability between the 
beam and the confined plasma. Let us consider the CWI. If the Penning trap is filled to 
its maximum electron density (co^2 = 0?I2), then the plasma density is about 8 times the 
beam density. The maximum growth rate12 of the instability is y= 0.4a3ix5[nb/np]1/3, and the 
group velocity of the fastest growing wave is vg = 2vb/3. Since the instability is 
convective, the number of e-folding lengths is Ly/vg. This is about 16 amplitude e-folds 
for the CWI. Depending on the initial noise level, this could well be a significant noise 
level and it could affect either the beam of the plasma.  On the other hand, if the Penning 
trap is only slightly filled, the beam is the heavier fluid, the maximum growth rate is 
0.4a^b[np/nb]1/3, and the group velocity is one third the beam velocity. In this case there 
are about 8 amplitude e folding lengths in the microwave circuit. Possibly, this beam 
plasma instability could be an additional factor leading to axial loss of the trapped 
electron plasma. 

Finally we consider the effect of the microwaves on the background plasma. The beam 
sets up a microwave signal by its interaction with the microwave circuit. This microwave 
circuit sets up a slow wave in the drift tube, and this slow wave takes energy from the 
beam. Typically, the longitudinal fields of the microwave trap the beam, so that the beam 
slows down to the phase velocity, and also acquires some thermal spread: Usually, the 
phase velocity is reasonably close to the beam velocity. For the sake of argument, let us 
consider a phase velocity which is 85% of the beam velocity. Then for the beam to be 
trapped by the microwave, the trapping width vT = 2[ety/mk]m, must be equal to about 
15% of the beam velocity. Here $ is the longitudinal potential of the parallel microwave 
electric field and k is the longitudinal wave number. For the microwave field to trap the 
main plasma, the trapping frequency would have to be about6 times larger, or the power 
of the microwave field, which is proportional to <|>2 would have to be larger by a factor of 
1296. Thus it seems very unlikely that the microwave field produced by the beam-wave 
interaction will have a very large affect on a background electron plasma in the Penning 
trap. 

While our calculation shows that the Penning traps in the CWI do not fill to very high 
density, an interesting speculation could be on what the effect would be on a CW 
gyrotron (or other gyro device). The magnetic fields and confining potentials are now 
much greater. Furthermore, beam electrons would normally adiabatic well into the 
depressed collector region. It could be that such a gyrotron might have a very high 
density of trapped electrons. 
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VH. the Gas Supply 

Here we investigate very briefly the question of gas supply in the CWI.     Let us say that 
in the microwave circuit part of the tube, there is a source of gas Sg and that it is pumped 
out at a rate £. The maximum that £ can be is the sound speed divided by the length of 
the tube, or about 2xl03 s1 for the CWI. If the background pressure is 10"8 Torr, this 
means that Sg is 6xlOn cm'V1 or less. Now let us look at the effect of ionization. 
Considering only beam ionization, for the 3 Amp beam in the CWI, the equation for the 
gas density is 

— = Sg-fr-3xlO'N (35) 

Thus taking the minimum value for ionization, and the maximum value for pump speed, 
we see that beam ionization will significantly increase the neutral pump out rate. It seems 
likely that ionization will significantly deplete the neutrals if the gas source Sg is 
unaffected by the beam. One intriguing possibility is that the gas source is in fact affected 
by the beam, and that the noisy tubes have a larger Sg than the quite tubes. 

VHI.  Future Theoretical Work 

Assuming that ion noise is a serious enough problem that significant resources may be 
committed to it, we consider here what directions future theoretical work might take. The 
main need, it seems, is for the development of numerical simulation schemes to examine 
more carefully the physics developed in Sections IV, V, and possibly VI. There are many 
levels of difficulty one could envision. The simplest would be a one dimensional code in 
the axial coordinate. This would be a Monte Carlo style particle simulation. There 
would be some background gas and it would be ionized by the beam. The secondary 
electrons and ions and all their progeny would be followed axially in their self consistent 
potential. The calculation of the potential would be extremely simple, Eq. (10) shows 
that it is just proportional to the total charge density. Thus the potential calculation is 
simpler than a solution of Poisson's equation. With a simulation like this, the one 
dimensional ion drain to the cathode could be simulated with or without a depressed 
collector. Also the one dimensional filling and dumping of potential buckets caused by 
beam scalloping could be simulated by simply modeling the beam scallops as externally 
imposed axial potential variations. 

However, as with any such code that attempts to model the microphysics, there are 
difficulties regarding the disparate time scales. Some of the important time scales for 
such a simulation are enumerated in Table 1. The fastest time scale is the inverse 
cyclotron frequency of about 20 psec. However the simulation must proceed for times 
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RELEVANT ELECTRON AND ION TIME SCALES 

Process 

Cyclotron 
Motion 

Electron 
Bouncing in 
Scallops 

Ion Axial Bounce 

Ion Radial Bounce 

Electron 
Elastic 
Collision 

Ion Neutral 
Charge 
Exchange 

Avalancne Ionization 

Electron 
Electron 
Collisions 

Ion Ion 
Collisions 

Formula 

Qc"1 

(kßVe)-1 

(kßVi)-1 

[M/2jmbe
2]1/2 

-l (NGpVe) 

(NcXxVi)-1 

(NaiVe)1 

3xl05Te
3/2/nX 

2xl07Ti3/2(MMp)
1/2/nA. 

Time (sec) for CWI 

2x10"" 

4x10 ii 

2xlO"9(Mp/M) 

3xlO'9(Mp/M) 1/2 

5xlOn/P(torr) 

1/2, 2xlO^(MMp),/z/P(torr) 

2.5xl010/P(torr) 

3xl07/n(cm"3) 

1/2 ,„/ -3x 2xlO;'(MMp)i/7n(cm-:,) 

Notes: Electron and ion thermal energies are assumed to be lOOeV characteristic of 
ripple well depth, Mp is the proton mass, Coulomb logarithm is assumed equal to 10, 
Elastic, ionization and charge exchange cross sections typically as given in Ref. (6), ee 
and ii collisions as given in Ref. (11), other parameters as quoted for the CWI. 

TABLE 1 
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very long compared to the ionization time, or for at least 10 ms if the background 
pressure is 10" torr. This is nine orders of magnitude in time scale. Notice also that any 
electron or ion dynamic time scale is much faster than any of the processes measured in 
either Smith's or the CWI work. These experiments seem to be measuring mostly 
collisional processes. 

Clearly, to simulate, the time scales must be very greatly compressed. One possibility is 
not to follow the electron gyro motion, but rather to follow only the guiding center, and 
allow perpendicular and parallel velocities to exchange with the various collision 
processes. However this only increases slightly the minimum relevant time. However if 
the background pressure is artificially increased by perhaps 4 orders of magnitude, the 
ionization time is speeded up to about 1 \isec, and it might be possible to follow the 
electron bounces in the well and also the ionization and associated relaxation oscillation. 
This would be easier still if the electron mass were artificially increased.   However one 
must be cautious not to artificially raise the background pressure to too high a value. If 
one does this, Eq. (19) shows that the ripple potentials may themselves be artificially 
washed out.  Also note that if the neutral density is artificially increased, electron 
electron collisions are much less important than electron neutral collisions(that is if the 
plasma electron density is 1010cm"3, or 10% of the beam density), whereas in the physical 
problem, they are about as important as ionization. 

A simulation code which treats the electrons as guiding centers, but contains all other 
processes has been developed for the NRL plasma processing program12, and it could be 
adapted rather easily to the problem of ion noise in microwave tubes. In fact since the 
code of Ref. (12) treats the electron electron collision as a grid quantity, these collisions 
could be artificially speeded up also. 

It would be important to include models for the atomic physics that are as accurate as 
possible. For a particular gas, it should certainly include reasonably accurate models for 
the ionization by the beam, as well as reasonable models for the energy distributions of 
the secondaries. The ionization of the gas by the secondaries is also extremely important 
for cases where they are confined, and this should be followed as well. 

Once on has a one dimensional axial PIC/Monte Carlo simulation, the next obvious thing 
is to extend it to two dimensions. The calculation of the potential would now involve 
both the radial and the axial charge density. With a two dimensional simulation, one 
could simulate the radial loss of confinement of the ions when their density becomes as 
large as the beam density, as well as the collisional radial flux of electrons. 

A more complicated part, but a very important one is the gas recycling and resupply. 
Especially for the CWI, this appears to be playing a very important part. This would 
undoubtedly involve physical models for gas absorption and desorbtion from the walls, 
and the filling of the tube by the desorbed gas. 
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As is apparent from Fig. (3), in at least certain cases, the phase oscillation has the form of 
a relaxation oscillation where it snaps back very quickly. It seems as though in these 
cases, an instability may be occurring. There could be interactions between electrons and 
ions trapped in separate, but spatially overlapping traps, and at some critical density, this 
equilibrium could be unstable. 

Finally, if one knows the ion drainage to the cathode, one can add specified positive 
charges to the electron gun and focusing regions and see what effect this has on the 
production of the electron beam.   It seems that this effect could be easily added to the e- 
gun simulations. 

IX. Conclusions 

We have sketched certain elements of the theory of ion noise in linear microwave tubes. 
The measurements of ion current to the cathode in Smith's experiment seem to be 
reasonably consistent with theory, but knowledge of the ion mass would give further 
confidence. A very useful experiment would be to repeat Smith's experiment with a 
mass spectrometer behind the cathode to investigate what the ions are. The results of ion 
current oscillation in Smith's experiment also seem consistent with electrostatic traps 
generated by the beam ripples filling and dumping. The CWI ion noise experiments show 
a similar effect.  In both cases, the relaxation oscillation time seems to be reasonably 
consistent with theory. The sensitivity of the ion noise in the CWI to solenoidal field and 
voltage may be result from a combination of the number of beam scallops which occur in 
the interaction region, as well as to the entrance conditions. If the beam has some thermal 
spread, entrance conditions would become more important, and this too seems to be at 
least qualitatively consistent with theory. We further speculate that the difference 
between quite and noisy tubes may have to do with what the actual gas supply is in a 
running tube. Finally, in tubes with a depressed collector, the Penning traps do seem to 
fill up with electrons about as predicted. It is possible that gyrotrons or other gyro 
devices with depressed collectors may fill to a much higher density of secondary 
electrons. 

Appendix A:  An Approximate Calculation of the ionization Multiplicative Factor from 
Ionization by Secondaries. 

The cross section for direct ionization by the beam is given in for instance Fig. (6), and in 
Eq. (4) at higher beam energy. As the beam traverses the gas it loses energy, and mis 
energy goes into ionization, the energy of the secondaries, various excitations, and the 
recoil of the atom. The secondary electrons produced generally have a rather low energy 
distribution, but some fraction of them do have energy above the ionization energy; if the 
energy of the secondary is, say 100 eV, its ionization cross section is much greater than 
that of the beam electron.  The number of secondaries produced by a primary is then 
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determined experimentally, for instance by measuring the current, if a small electric field 
is imposed on a gas which contains a radioactive beta decay element which produces a 
beta at known rate and at known energy. Also the number is calculated theoretically by 
Monte Carlo calculations. A primary is followed as it ionizes and collides. Then the 
secondary and tertiary etc. electrons are also followed until all slow down to the point 
where they have energy below the ionization energy. The simulation then keeps track of 
the total number of electrons produced. Very shortly, we will present here a very 
approximate calculation of this type. 

A simple way to calculate the number of electron ion pairs produced per primary (i.e. 
beam electron) is to use the tabulated energies to produce an electron-ion pair for a 
primary of a given energy. These values are derived either from experiments or from 
Monte Carlo calculations. These are tabulated for instance by Christophorou7 for many 
common gases. For typical diatomic gases, the energy to produce an electron ion pair is 
about 30 eV. Since the ionization energy is typically about 15 electron volts, beam 
ionization is rather efficient; typically about half the lost energy goes into ionization. One 
can then find the number of electrons produced by the beam by using Bethe's formula for 
energy loss of the beam in the gas13. By dividing the rate of energy loss per cm by the 
energy to produce an electron ion pair, one determines the number of electron ion pairs 
produced per cm. Then by using the primary ionization cross section, Eq.(4), one 
determines the production rate from the primaries alone. The ratio is then the number of 
electrons produced per primary. 

Bethe's formula for high energy electrons in oxygen8'9 is 

dEjeVlcm) _ 2xl0~15NlnlOE(keV) 

dx        ~ E(keV) (A1) 

whereas the rate of production by primaries is 

dn 
-£-»°. (A2) 

Taking the value of 30 eV for electron ion pair production, we find that the total number 
of electrons produced per primary ionization is about 3.1, or about 2.1 ionizations by the 
secondaries, tertiaries, etc. 

We now perform an approximate calculation of the ionization by the secondaries as one 
might do in a Monte Carlo simulation. A secondary electron is produced with some 
energy distribution, and one clearly needs this to continue. One example is for Argon14. 
The relative distribution of secondaries for a primary electron of energy E is denoted 
SM(E,T), where T is the energy of the secondary electron plus 15.76 eV.   A plot of 
SM(E,T), sketched from Ref. (18) is shown in Fig.(Al). Here R is 13.6 eV. An 
approximation to the plot, for a 10 keV primary, is shown by the heavy lines. Notice that 
a constant value on the plot actually means that the distribution function is proportional to 
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Figure Al. 
electron. 

Energy distribution of secondary electrons for ionization of argon by a fast 
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T" . The break in the curve in Fig. (Al) is at about the ionization energy of argon, 15.76 
eV, which we will call E0 here. Thus as an approximate distribution function for the 
secondary energy, which we now call F^, we have 

f(Es) = 1.6Eo/(Es + E0)
2 ES<E0 

(A3) 

f(Es) = 0.4Eo/(Es + Eo)
2 ES>E0 

where the distribution function is now normalized to unity. Secondary electrons can 
generate additional ionization if ES>E0. Integrating the distribution function, we find that 
about 20% of the secondaries can giver rise to additional ionization. Now let us calculate 
the effective ionization cross section from these secondaries. Figure. (6) shows that the 
ionization cross section has a broad maximum o0 of about 2xl0"16 cm2 for energies of 
about 60 eV to about 1 keV, and below 60 eV, the ionization cross section rises roughly 
linearly from zero to this maximum as the energy increases from E0 to 60 eV (about 4 E0). 
If we take the approximation to the distribution function given in Eq.(C3) and average the 
cross section, this average cross section from the secondaries turns out to be about as= 
0.08(jo, or about 1.6xl017 cm2. This is about 3 times the primary ionization cross section 
of about 5x10"   cm for a 20 keV electron. Thus from this simple calculation, we find 
that the secondaries are responsible for about 3 times the ionization of the primaries. The 
total number, from our previous calculation from Bethe's formula, was about 3 total 
electrons produced for each primary (including the primary). Thus our calculation gives 
reasonable qualitative agreement. 

Appendix B: The Integral Equation for the Steady State Ion Current and its Solution 

We assume that the ion flow is collisionless, and that there is an ion source which is 
given by G; which is uniform in space. Here, G; is fojN.   Each region of length dx 
produces ions which accelerate from their origin to the cathode. For convenience, we 
consider positive ion velocities, so in the configuration for this appendix, the cathode is 
on the right. Hence at each position, the ion density is the sum of all ion beamlets 
produced to its left. Hence the ion line density at position z, A;(z) is given by 

Jo        \2eKrk, x 
(B1) 

— [A(y)-A(*)] 
M 
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where x=0 is the left most position at which ions are produced, and where we have used 
the relation between potential along the axis and linear charge density, Eq.(9 and 10). 
Equation (Al) clearly only has solutions in which A is a monotonically decreasing 
function of x. As discussed in Section IV, the beam density is not included in Eq.(B 1) 
because it is uniform axially, and the space charge of the secondary electrons is not 
included because it is assumed to be much less than the ion charge density, due to their 
greater velocity. 

To solve Eq. (B1), change the independent variable on the right hand side from y to A(y). 
Then, Eq. Takes the form 

where A„ = A(x=0), X =A/Ao, and V(X) = dxAß. Thus, Eq. (B2) is an integral equation 
for P(X), and thereby for the axial profile of the potential. It is an equation of the Abel 
type. As a solution, try some function of the form 

where S is a simple function of X. Inserting Eq. (B3) into Eq. (B2), the radical in the 
denominator is a quadratic which is positive between X<X'<1, the range of the 
integration. By forming a simple table of the integral of 

r_f*      E(X)dX 
*l Va'-AXl-A') m) 

for various simple functions S, we find that 

T = -7t   forH=l (B5a) 

and 

r = -(n/2)[l+X]    for  E=X (B5b) 

Thus the solution to Eq.(B2) is 

2A, 
dh (B6) 
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Equation (B6) shows that dA/dx =0 at A=Ao, the furthest point from the cathode. As the 
ions accelerate, the derivative becomes singular at A/Ao = Vi. This presumably is the 
position where the solution matches onto some different solution where A varies much 
more quickly in x. In other words, the singularity at A/Ao = Vi marks the position where 
solution in the drift tube joins onto the solution in the gun region. This then confirms the 
estimate in Section II, where it was assumed that at the cathode end, the ion charge 
density is just half of what it is at the collector end of the drift tube.   In terms of the 
parameters of the ion source and geometry, Eq. (B6) shows that the maximum ion line 
charge density near the collector end of the tube is given by 

A0 = 
2 »2 

9K'G. 
ld 

1/3 

(B7) 

This is very close to the rough estimate derived in Sec. n. Smith points out that the total 
ion charge contained can be obtained by numerically integrating A(x) along the tube. He 
finds the result 

Qi=0.9Aod (B8) 

Appendix C:   Self Consistent Potential for Scalloped Beam; Thermal Distribution 

Let us assume that the imposed axial potential generated by the ripple in beam envelop is 
given by <|)0coskx. Trapped in this potential are electron and ions with line charge density 
Ac and A;.   As we have seen in Eq. (9 and 10), the total potential generated by these line 
charges is ß(Ai-Ae) where ß = l+21n(a/rb). The self consistent equilibrium must contain 
almost entirely trapped particles because untrapped particles are not confined, but escape 
to the collector or cathode. If the trapped particle distribution is in thermal equilibrium, 
we have 

A, = A0exp 
e(0ocosfo + /?(A,.-Ae)) 

T 
(Cl) 

and 

Ai = Ae" (C2) 
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because the sign of the charge is equal and opposite for the ions. We have further 
assumed that the electrons and ions have the same temperature and the same density 
coefficient A„. Equations (Cl and C2) are two nonlinear equations for the spatial 
dependence of the variables A« and A*. Notice that because of the paraxial assumption, 
these are algebraic and not differential equations. 

The approach is then to solve Eqs. (Bl and B2) subject to subsidiary conditions 
determined by the physics. This subsidiary condition is that virtually all of the particles, 
both electrons and ions, have to be trapped, since untrapped particles rapidly escape. 
Equation (Cl) shows that the electron density is maximum at the potential maximum and 
is minimum at the potential minimum, and visa versa for ions. Clearly the temperature 
must be small compared to the potential difference if the majority of the particles are to 
be trapped. 

Subtracting Eq. (C2) from Eq. (Cl) and defining the variable u = [(Ae-AiVAJ, we find a 
single equation for u, 

« = sinh[e^      H ° 3 (C3) 

along with the equation for electron line charge density in terms of u 

A, = A0 exp[e^      H ° ] (C4) 

Equation (C3) always has a solution for u, as can be seen by graphing both sides as 
functions of u. However only under some conditions will the majority of the particles be 
trapped. 

We now write out approximate solutions for u and the electron density at kx=0, the 
maximum of the imposed potential, kx=rc/2, the midpoint, and kx=rc, the potential 
minimum. At kx=0, and with the assumption of small temperature, we find an 
approximate solution for u is 

u = e<l)0/ßA0-(T/ßA0)ln[2e(t>o/ßA0] (C5) 

and 

Ae=2(Mi 

At kx=7i/2, the solution is u=0, and 

Ae = Ao (C6) 

At kx=7c, an approximate solution is 

u = -e<l)0/ßA0+(T/ßA<))ln[2e(t)0/ßA0] (C7) 
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and 

Ac = ßAo2/2<{>0 (C8) 

Clearly there can only be a solution with most of the particles trapped if Ae(x=0)» 
Ae(x=7t/k), or 

ß2Ao2/4<t>0
2«l (C9) 

This condition is qualitatively like that specified in Eq. (19), and indicates that a solution 
with mostly trapped particles only exists if the imposed potential is greater than potential 
of the trapped particles. 

Appendix D:   Self Consistent Potential for Scalloped Beam; an Initially Cold Plasma 

We now consider the case where electrons and ions are assumed to be cold as they are 
ionized. However they are ionized in an electrostatic potential <|)(x). Once they are 
ionized, they oscillate in the potential well, and over a long time, the distribution function 
becomes a function of total energy only. This distribution function is the initial 
distribution function averaged over a phase orbit. If H is taken as the total energy and the 
cold plasma is produced with an initially uniform density n, we find that the ion 
distribution function is given by 

fm= In-JlM 

dx i dx (Dl) 

<jH-e(Kx) 

where d<J)/dx is expressed as a function of H at the turning point of an orbit of total energy 
H. To proceed we approximate the sinusoidal potential with the parabolic approximation 
near the potential minimum, 

<t> = <!>o[(kx)2/2-l] (D2) 

and assume this approximation for $ for -<|>0<(t>«|)0. Then, with a calculation of the various 
integrals, we find that the ion distribution function is 
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f,(H) = 
n 

H + e<j)0 

M 

(D3) 

The next thing is to calculate the ion density. This turns out to be 

«((0) = -f 
ir J 

dH 

This integral over H can be done analytically and the result is 

(D4) 

nm 
■ K-l\n 

n 
(30.-*) + V(3».-»)'-(»,+tf 

0o+0 
(D5) 

A plot of ni(<|))/n as a function of tytyo is shown in Figure Dl. The ion density as a 
function of potential has an integrable, logarithmic singularity at<J> = -<j)0, the minimum 
potential, and goes to zero at the maximum potential, as it is obvious that it msut from 
Eq. (D4).   Also shown is the analogous plot of electron density, which is just the same 
function, but of -$.   If we define the right hand side of Eq. (D5) as f(ty§0) and account for 
the fact that the electron and ion charge also contribute to the potential, the self consistent 
equation for ion density becomes 

A„    J 
0 jM.Aj-A/ 
t    0O    K 

(D6) 

with a corresponding equation for electron density. Here we have written the densities in 
terms of line density rather than volume density. If we define a new function g(x) as f(x)- 
f(-x), and as in the case of the thermal distribution, define u=(Ai-Ae)/Ao, we find a single 
equation for u 

u = g 0     ßK -u 
I0o 0o       J 

(D7) 

As for the case of ion noise, one can show graphically that Eq. (D7) always has a solution 
for u. However, as with the thermal distribution function, this solution only has a small 
value of electron density at the maximum potential only for small values of $AJ§0. Thus 
Eq. (C9) must be satisfied for the initially cold distribution function if there are to be 
mostly confined trapped particles and very few untrapped particles which are not 
confined, but escape to the cathode or collector. 
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Figure D1.   Plot of trapped electron and ion density as a function of potential for an 
initially cold plasma. 
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